I L

NASA TN D-38

NASA TN D-38

AN O L
) FY2elf
37€

TECHNICAL NOTE
D-38

TO A CONSTANT HEAT INPUT
By Robert G. Thomson and J. Lyell Sanders, Jr.

-Langley Research Center
Langley Field, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON September 1959

(MASA-TN-D-38) EFFECTI CF CECELWISE HEAT N8S5-7C716
CCNDUCTICN CN TIEE TGRSICNAL STIFFNESS CF A

LIAKCMD-SHABELD WING SCGBJORCIEL IC A CONSTANT

EEAT INFUI (NASA. langley PFesearch Center) Unclas
37§ 00,02 017194264




O F

NATTIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-38

EFFECT OF CHORDWISE HEAT CONDUCTION ON THE TORSIONAL
STIFFNESS OF A DIAMOND-SHAPED WING SUBJECTED
TO A CONSTANT HEAT INPUT

By Robert G. Thomson and J. Lyell Sanders, Jr.
SUMMARY

The effect of thermal stresses in reducing the torsional stiffness
of a diamond-shaped wing subjected to a suddenly applied constant heat
nput is investigated, chordwise heat conduction being taken into
ce Analytic solutions are obtained by using separation of varia-
bles and Mellin transforms and computed results are given in graphical
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form. The effect of chordwise heat ccnduction in reducing the tempera-
ture gradlents 1is greatest, as would be expected, near the leading and
trailing edges of the wing. The dependence of torsional stiffness
reduction on the heating rate and the final wing temperature is inferred
from the results obtained.

INTRODUCTION

The influence of chordwise heat conduction has previously been
neglected in calculating the effects of aerodynamic heating on the tor-
sional stiffness of thin, solid, diamond-shaped wings. (See, for example,
ref. 1.) Because of the neglect of chordwise heat flow, under conditions
where heat is applied abruptly the temperature at the leading and trailing
edges of the wing instantaneously becomes the final equilibrium tempera-
ture and produces a more severe temperature gradient than would actually
occur in the structure. The resulting torsional stiffness reduction
calculated from this temperature gradient will be of greater magnitude
than is actually present.

Related problems in which chordwise heat conduction was considered
have been investigated in references 2 and 3. In reference 2 the effect
of chordwise heat conduction on the leading-edge temperature of a flat
plate subjected to aerodynamic heating is presented. An analysis of the
temperature distribution in a diamond-shaped wing subjected to a constant
heat input with heat flow permitted along the chord and through the



thickness of the wing is given in reference 3. Neither of these inves-
tigations, however, consider the effects of chordwise heat conduction
on torsional stiffness.

In the present paper the influence of chordwise heat conduction on
the torsional stiffness of a diamond-shaped wing subjected to a constant,
uniform, heat input is investigated. Although this heat input is far
from that occurring in an actual structure undergoing serodynamic heating,
such a heat input would be realized from suddenly applied radiant heating,
as by heating lamps in the laboratory, or from a nuclear explosion. In
particular, the assumption of a constant heat input permits an exact ana-
lytical solution of this problem. This exact solution can serve two
purposes: TFirst, the influence of chordwise heat conduction on torsional
stiffness can be quantitatively shown. Second, the exact solutlon can
serve as a basis for the evaluation of approximate procedures that must
be applied to obtain the influence of chordwise heat conduction when a
structure undergoes aerodynamic heating.

SYMBOLS
a arbitrary constant
A cross-sectional area, arbitrary constant
b = 2ty fe
c chord length
cn arbitrary constants (n =1, 2, 3, . . .)
Cp specific heat of wing material
Dp constant defined after eq. (6)
E Young's modulus
f(s) Mellin transform
G shear modulus
J torsional stiffness constant
JIn Bessel function of the first kind of order n

K thermal conductivity of wing material
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T

qW(Tl)

X3

i

rate of heat input per unit area of surface (constant
and uniform)

Struve function of order n
wing thickness (bx)

maximum wing thickness

temperature

nondimensional temperature parameter, g% U

nondimensional transient temperature parameter

nondimensional quasi-steady-state temperature parameter

distance along chord measured from leading edge

Bessel function of second kind (Weber function) of order

characteristic roots of Jl(Zn) =0

linear coefficient of thermal expansion
weight density of wing material
time

nondimensional time parameter, égl

]

torsional stiffness reduction parameter (see eq. (15))

spanwise stress
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n thermal diffusivity, Bcp

_(63)g - (&) eps

(GT)o
T gamma, function
Subscripts:
eff effective
el elementary
0 initial
n,m integers
Superscript:
J integer

Primes denote differentiation with respect to x; and dots denote
differentiation with respect to 7.

EFFECTS OF CHORDWISE HEAT CONDUCTION

Temperature Distribution

The analysis of the chordwise temperature distribution in a diamond-
shaped wing subjected to a constant heat input is presented in appendix A.
In this analysis the spanwise heat conduction was neglected, the tempera-
ture through the thickness of the wing was assumed to be constant, and
all material properties were considered to be invariant with temperature.

From a consideration of the heat balance in an element of the wing

(as shown in fig. 1) the following partial differential equation was
obtained after terms of higher order were neglected

ou o [, oU
bx = = 2 K—i{t = 1
PepPx oT ¥ Bx( ax) (1)

Equation (1) can be written in nondimensional form as follows:
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22,0 = 1+ (xq0")’ (2)

where
u=Xg
qe
On
T, = — T
1 c2

The primes denote differentiation with respect to x; and the dots
denote differentiation with respect to 7.

Because of the symmetry of the cross section only half of the chord
length was considered. Thus the appropriate boundary conditions were
taken to be

U'(1,m) =0 (&)
with the initial condition taken as
U(x3,0) =0 (5)

In order to facilitate numerical calculations it was found advisable
to make two solutions of the partial differential equation given in equa-
tion (2); one solution appropriate for large values of Ty, and another

for small values of 7. These solutions are discussed in appendixes A
and B.

Long-time solution.- In appendix A the temperature distribution in
the wing was found by considering the temperature to be the sum of two
parts: a quasi-steady-state solution in which the chordwlse temperature
distribution is stabilized, and a transient temperature distribution
which is a function of both time and position. The final temperature
distribution as derived in appendix A is




wiere

1
JF Jo(ZnXq )dx;
-2 Jo

7,2 J02(2Zn)

D, =
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and 2, 1s the value that satisfies the equation

Jl(zn) =0 (M
1
The evaluation of \/\ Jo(anl)dxl is described in appendix C.
0

The chordwise temperature distribution given by equation (6) is
identical to the expression for an average (through the thickness) chord-
wise temperature distribution found in reference 3 where the heat con-
duction through the thickness and along the chord was considered.
Furthermore, as can be seen from figures T and 8 of reference 3 only s
slight temperature gradient through the thickness of the wing was present. -

Theoretically, equation (6) gives the temperature at any station of
the cross section at any time. However, for both 77 and Xx; small

(a short time after the application of heat with attention confined to
the vicinity of the leading or trailing edge), a prohibitive number of
terms of the series in equation (6) is required to obtain reasonable
accuracy. On account of this limitation, equation (6) 1s referred to
herein as the "long-time" solution. Note that for very long times

(Tl > l) the series in equation (6) becomes negligible and continued

heating only causes a uniform increase in temperature as a linear func-
tion of time. This is referred to as the quasi-steady-state condition.

Since equation (6) could not be practically used for small T
and x,, a separate "short-time" solution was obtained by a different

approach. This approach is briefly described below.

Short-time solution.- For short times (Tl < 0.0l) the important

happenings are confined to the leading and trailing edges of the wing. ~
Therefore, a solution for the temperature distribution of an infinite
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wedge with apex at Xy = 0O was used in appendix A to approximate the

short-time temperature distribution in the diamond-shaped wing. The
differential equation and boundary conditions were identical to those
stated in equations (2) to (5) with the exception of the boundary con-
dition at the midchord (eq. (4)), which is replaced by U(xl,Tl)-90 as

X .

The character of the "short-time" problem suggested the use of
Mellin transforms for its analysis and yielded either an asymptotic or
a convergent power series solution. The details of the analysis are
given in appendix A.

As shown in appendix A, the short-time temperature distribution
for the vicinity of the leading edge and for short-time intervals can
best be represented by the convergent power series given as

2n-1
/kl \

= PR \
U = 571X - xlvg ? (-1) n(2n - 2“(ﬁ) (8)

n=l1,2,3,... 23}.').(1'1')5

For short time intervals excluding the vicinity of the leading edge the
asymptotic power series is the more appropriate and is given as

-(2m+1)

U~ i )" <x1 > (9)

m=0,1,2,... 2% (m + 1)(m1)’\1

Elementary solution.- In order to provide a basis for assessing
the effect of chordwise heat conduction on the average chordwise tempera-
ture distribution, the solution for zero chordwise heat conduction is
required. For this case, the thermal conductivity K of the wing
material is taken to be zero in equation (1); the following simple rela-
tion results:

el _ 2q
orT PCpbx

(10)

By integrating this expression between the initial and final conditions
and applying the initial condition U(xl,o) = 0, equation (10) becomes



= 2q
el © T (11)
pcpbx
cr In nondimensicual fourm
T
1
U, = — (12)
el
2Xl

This approximate (or elementary) temperature distribution does not
satisfy the additional boundary conditions stated in equations (3)
and (4). When x approaches zero, the temperature approaches infinity.
At x = c/2, the temperature gradient is not zero and a point of discon-
tinuity exists. The inclusion of chordwise heat conduction has there-
fore reduced the temperature of the leading (and trailing) edge to a
finite value and diminished the temperature gradient at the midchord to
Zero.

Results of Temperature Distribution Analysis

In order to show the effect of chordwise heat conduction on the
chordwise temperature distribution, the solutions for the temperature
distribution with and without chordwise heat flow were plotted across
the half-chord in figures 2 and 3.

In figure 2 the ratio of U to Ugy 1s plotted across the half-

chord for various values of Tq. In the vicinity of the leading edge
(O <x;< O.l) equation (8) was used to calculate the temperatures for

0< T <0.01. The temperature distribution for the remaining ranges
of x4 and Ty was calculated by using equation (6). Note that in

the limit as Ty—® in equation (6), GQI--e 2x7.
e

In figure 3, U and U, are plotted across the half-chord for
various values of Ty The influence of chordwise heat conduction can

be seen to have the greatest effect, as would be expected, near the
leading edge of the wing. In the calculation of torsional stiffness

reduction, the temperatures in the vicinity of the leading edge are
most important.

O =Wt
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Torsional Stiffness Reduction

The presence of chordwise thermal gradients in a cross section Ilnduces
thermal stresses which in turn cause a reduction in the torsional stiff-
ness of the wing as shown in reference 1. In reference 1 the effective
torsional stiffness of a thin wing subjected to spanwise normal stresses
was derived and is

2
(67 eps = (G0)g + /; "(% - x) aA (13)
where
(63)g initial torsional stiffness
g spanwise normal stress (tension positive)
For the diamond-shaped profile (ref. 1), (GJ)g = —l-Gth.

[
no

For the constant heat input and double symmetry of the wing con-
sidered in this paper, the induced thermal stresses will produce only a
net average translation of the cross section. (See ref. 4.) The average
spanwise strain is therefore a constant and, by application of the equi-
librium condition of zero thrust, the spanwise stress can be expressed

g

through
fﬁaA
_A -
o ©
fd.A
A

The chordwise temperature distribution U was derived for long-
and short-time conditions; thus, the evaluation of the reduction in tor-
sional stiffness must necessarily be separated in the same way. The
following sections deal with the evaluation of torsional stiffness reduc-
tions due to these temperature distributions derived for long- and short-
time intervals and for the elementary solution in which heat conduction
was neglected.

-

U (1k)

Long-time solution.- Substitution of equation (6) into equation (1)
3

Get
for spanwise stress and taking (GJ)O = —igg- yields after integration

and simplification the expression
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(GJ)ef.f _ 1 Bye Ve (15)
e L o) x BV

where the torsional stiffness reduction parameter [ﬁW(Tiﬂ is expressed

as
2
z
0 _ g T 1
Q¥(11) = A5+ 6 Dy = f Jo(Zaxy)axy | (26)
2ko n=1:3,3, 72 0

Only the inclusion of the first four terms of the series in equa-
tion (16) is necessary to give the effective torsional stiffness within
1 percent for 71 > 0.01; for T > 0.08 only the first term is neces-

sary. The series of Bessel functions was therefore used to calculate
the reduction in torsional stiffness for T; > 0.01.

Short-time solution.- For short times (Tl < 0.0l) the expressions

for U given by equations (8) and (9) may be substituted into equa-
tion (14) for spanwise stress. In order to evaluate the integrals, how-
ever, the temperature distribution was rewritten in the form given by
equation (A15) as

7= v(EL (17)
*m (vr)

Substitution of equation (17) for U into equation (14) for spanwise
stress yilelds

l 1 !
e (i:l 7

The torsional stiffness reduction parameter (see eq. (15)) therefore
becomes

O FWH
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1

5 T 1 X 1 X
Q¥(T1) = 4 52\[T fo xﬂ(%) dxy - 6|11 fo x12v<_\/i:l> dxy +

1 X
3|2 fo xl5v<i%> ax; (19)

The details for the evaluation of the integrals in equation (19)
are given in appendix B. Substitution of these values for the integrals
into equation (19) and simplification yields the final expression for
the torsional stiffness reduction parameter as

1

1 5 9.2 1
av(r1) = q ot ™? - g 1% - g Ty loge2 - % T1°1oge o *
. 2
o (2 - 10n - 6) (2] Bry™H/2 ]
2

Lin=2,3,4... (2n - 1)(2n - 2)(2n - 3)25™*1(n + 1)(n!)]]
(20)
where 7y = 0.5772157 . . . Buler's constant.
Elementary sclution.- In order to obtain, for the sake of comparison,
torsional stiffness reduction without chordwise heat flow the expression

for T given by equation (11) is substituted into equation (14) for
spanwise stress. Thus

o _7g.(2t .
o el(tm 1) (21)

Substitution of equation (21) into equation (13) for effective torsional
stiffness yields, after integration and simplification, the following
expression for the torsional stiffness reduction parameter

"1
qw(Tl) = a4 (22)
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Results of Torsional Stiffness Analysis

In order to determine the effect of chordwise heat conduction on
the torsional stiffness reduction, the function V(T1) was evaluated
\ =

for various values of T for the solutions with and without chordwise
heat conduction. The results are presented in figure 4 where W(Tl)
is plotted as a function of 7. When T4 approaches infinity, W(Tg

without chordwise heat conduction approaches infinity but the solution
with chordwise heat conduction approaches asymptotically the value
T - 0.0292. (See eq. (16).) Thus the torsional stiffness reduction

240
with chordwise heat conduction levels off after a finite reduction.

For the solution involving chordwise heat conduction the short-
time solution was used for 77 < 0.0l and the series part of equa-

tion (20) was found to be negligible. For T3 > 0.0l the long-time
solution given by equation (16) was used and required only two to three
terms in the series to obtain accuracy within 1 percent. As Ty

increases, the number of necessary terms in the series of equation (16)
decreases until for T > 0.08 only the first term was needed for accu-

racy within 1 percent.

A more useful and convenient presentation of the results of fig-
ure 4 might be effected if the influence of chordwise heat conduction
on the reduction in torsional stiffness is related to the magnitude of
q/K the retio of heating rate to conductivity which will yield a
desired temperature level at some point on the cross section, say, the
center x3 = 1, instead of being related to the time parameter T;.

This relationship can be achieved through the elementary temperature
relation (eq. (12)) from which it is seen that, for x = c/2,

c? q/K _ b

tm (ﬁ;l)x=c/2 1

Accordingly, the results of figure (4) have been replotted in figure (5)

in the form of plots of (ggi = W(Tl) against %é _:TEZE__‘__
. el W( Tl)el " (Uel> x=c /2

The ordinate _;QEQ__ is the ratio of the loss of torsional stiffness

A(G‘I)el

O FWwH
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calculated with chordwise heat conduction to that calculated without
accounting for the influence of chordwise heat conduction. From this
figure it is seen that for values of

2 K

& < koo
‘m (Uel)x=c/2

torsional stiffness reductions due to a constant uniform heat input g,
which are calculated without accounting for the benefits of chordwise
heat conduction, will be appreciably in error. The smaller the magnitude

2 _ak
m (Gél)x=c/2

conduction on torsional stiffness reductions from this type of heat
input. One might infer from this some general principles regarding the
reliability of calculations of torsional stiffness which do not account
for chordwise heat conduction. For example, if in the laboratory a
certain temperature at a point of a given thin wing structure is desired,
the magnitude of the heating rate used to reach this temperature must be
kept high if calculations of the resulting torsional stiffness, based on
the elementary theory, are to be considered reliable. Conversely, for a
given fixed heating rate applied to a given structure, calculations of
torsional stiffness which neglect chordwise heat conduction can be relied
upon only if the temperatures to be achieved in the structure are low.

of the ratio , the greater is the effect of chordwise heat

CONCLUDING REMARKS

Analyses have been made of the effects of chordwise heat conduction
on the torsional stiffness reduction of a thin diamond-shaped wing.
Analytic solutions for both long- and short-time intervals were obtained
by using separation of variables and Mellin transforms. The inclusion
of chordwise heat conduction in the temperature distribution analysis
produces the greatest effect, as would be expected, in reducing the tem-
perature gradients near the leading and trailing edges of the wing. For
a given structure this difference in calculated temperatures near the
leading edge is also shown to increase with increasing time. For small
time intervals the effect of chordwise heat conduction is small over
most of the cross sectipn. For large time intervals the effect of chord-
wise heat conduction must be taken into account over the whole cross
section to obtain satisfactory accuracy.

The inclusion of chordwise heat conduction leads to a finite cal-
culated stiffness reduction whereas the stiffness reduction, calculated
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with chordwise heat flow neglected, increases without limit. The effect
of chordwise heat conduction on the reduction of torsional stiffness for
a diamond-shaped wing subjected to a constant heat input is found to vary
inversely as the magnitude of the heating rate and directly as the con-
ductivity of the wing material and the final wing temperaturcs. If a
given diamond-shaped wing is heated at a low heating rate or to a high
final wing temperature, the effect of chordwise heat conduction on the
calculated torsional stiffness reductions must be considered.

Langley Research Center,
National Aeronautics and Space Administration,
lLangley Field, Va., May 8, 1959.
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APPENDIX A

DERIVATIONS OF CHORDWISE TEMPERATURE DISTRIBUTION

INCLUDING CHORDWISE HEAT FLOW

Bessel Series Solution
As a first step in determining the complete solution to equation (2)
for U, consider the quasi-steady-state solution in which transient con-
ditions are neglected. After a long period of time the temperature dis-
tribution will stabilize and continued heating of the wedge will only
cause a uniform increase in temperature as a linear function of time.
Therefore let

where c¢j 1is a constant and ml(xl) is some function of Xq -

Substitution of the expression for qu from equation (Al) into

. equation (2) and integrating with respect to Xy using the boundary
conditions given by equations (3) and (4) yields
° 2
X
_ 1
qu-—é—-xl+ T, + ¢ (A2)

The constant cp can be evaluated by equating the total heat in the

double wedge to the heat input over the time . In nondimensional
form this condition is

1 Ty
fo xUqg %1 = = (A3)
Thus
2
C = -
2 I
. Therefore the quasi-steady-state solution is
2
Xq 5
) Ugs = —= - Xp + T+ > (Ak)
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The complete temperature distribution analysis including the tran-
sient temperature conditions can be written as

U = Ugs + Ul(xl’Tl) ' (a5)

where Ul(xl’Tl) represents the transient temperature conditions. By

substitution of equation (A5) into equation (2) the heat balance equa-
tion becomes

2xl<ﬁqs + ﬁl) =1+ (xlUés>' + (xlu')' (A6)

Substitution of equation (AL) for Uygs 1into equation (A6) yields

U = ——— (A7)

The boundary conditions on U; are the same as those given by equa-
tions (3) and (4). However, the initial condition given by equation (5)

2
b
becomes: Ul<xl,0) = -(—%— - X + f%). By making use of the method of

separation of variables, the solution to equation (A7) can be expressed
as

-AT
Uy = @JO (\/éf xl) + c3Y0<\/5\ xlﬂ e 1 (A8)
where A is a positive undetermined constant. Application of the first
boundary condition given by equation (3) yields
05 = O

Application of the second boundary condition given by equation (4) leads

to the condition
() = o (29)

which defines values of A corresponding to the existence of nontrivial
solutions of equation (AT). Therefore, the general solution of equa-
tion (A7) must have the form
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[} -7 2
Y, §
Uy = E DnJo (ZnXy)e 2 1 (A10)
n=0,1,2

where 2, = qexn is the nth root of equation (A9). By using the initial

2
X
condition, Ul(xl,o) = - (—%— - Xy + f%) and the orthogonality relations

for the Bessel function, D, can be expressed in the form

Dy = (A11)

Further simplification of the integral in equation (All), by integration
by parts, ylelds

1
. H/:) JO(anl}dxl
D, o~ 5 (A12)
n I0°(Zn)
and
Do =0
Thus Ul becomes
o Zn®_
1
U] = E DnJo(anl>e 2 (A13)
n=1,2,3,...
and the complete expression for U as given by equation (A5) can be
written as
2
2 = ~Zn
X1 5 2 1
U= —=—=-x3 + T +=+ DnJo(anl)e (A1%)
2 12 .13 3
LAt S R

with D, defined by equation (Al2).
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Short-Time Solution

In order to arrive at a short-time solution to equation (2) the
temperature distribution of an infinite wedge with apex at x; =0 was
used to approximate the temperature distribution in the diamond-shaped
wing. The characier of tThe problem suggested looking for a solution
of the form:

U= (Pg('rl) V(X—ln'> = @2(71) v(e) (A15)
T1

Substitution of equation (Al5) into equation (2) yields

do, (T 2x4n (T
2%y -————21(_ 1) v(e) - 1-_1 §q>2<'rl)d:;§§) =1+ —géni) d_<1€<§ %é_él> (A16)

In order to eliminate 77 from the coefficients of equation (A16) let

n = 1/2 and Qg(Tl) = 711/2; the result is the ordinary differential

equation

2
¢ & v2§§) v (14 E) gy o (A17)
at at

The boundary conditions are

£ %ﬁl -0 (£ -0) (A18)
v(g) -0 (£—>x) (A19)

Note that the initial condition on U is automatically satisfied.

Since V(&) 1is analytic in the interval O < ¢ < » and satisfies
conditions (A18) and (A19), it has a Mellin transform f(s). (See
ref. 5.) Then

1 at+ioc

V(t) = 5 e f(s)¢ES ds (A20)

QO FWH



o= \WN

19

where a 1s a real constant yet to be determined. Substitution of this
expression for V(&) into equation (Al7) yields

a+ioe
'ei_i fa_iw Eé‘gs'l + (s - 1)gs+}] £(s)ds = -1 (A21)

or
1 8+l a+2+iw
— f s2r(s)e5~1gs + L f (s - 3)f(s - 2) e5-1as = -1
end a-ic ani a+2=-ic
(A22)

Equation (A22) can be written as

1 - ( 14 1 a.+2+1<=<>[2 ( ( ( el
o= s=f(s) &S~ s+——f s<f(s) + (s = 3)f(s - 2)| €5 ds = -1
enl 9% 2ni a+2-ie ]

(A23)

where € 1is the path shown in the following sketch.

S plane

a 0 at+2

~ &
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ct

g2¢(s) + (s = 3)f(s - 2) =0 (A2k)

Equation (A23) then becomes
1 2 Sw
—_ s<f(s s =1 A25
ol 9§e ( )¢ ( )

The general solution to the difference equation (A2k) is

ol

T FE(S " 2) P(s) (a26)
2

f(s) =
2

where P(s) = P(s + 2) 1is an arbitrary function of period two. (See
ref. 6, ch. XII.) P(s) and the real number & remain to be determined.

Equation (A25) will be satisfied if the path € encloses the point
s =1, s2f(s) has a simple pole of residue 1 at s =1 but is
otherwise regular inside €, and if all the integrals 1in question con-
verge. The condition of v(e) at infinity (eq. (A19)) will be satisfied
if a8 < 0 in equation (A20)). The condition on V(&) at zero
(eq. (A18)) will be satisfied if a> 0 or if -1<a< 0 and if
f(s) has at worst a simple pole at s = O and is otherwise regular for

-1< a S0+, In addition to these requirements the integral in equa-
tion (A20) must, of course, converge. All of these conditions will be
met by the following choice for a and P(s).

S A2
a N (A27)
P(s) = X (A28)
We
Thus finally
1 S = 1l\.s
-2 4l & —=—=)¢
v(e) = 2 [ b I S (a29)

enl J. )% - oo hv—2_ 28/2g1n ’-‘—2§- FQ(.S_g_?_)

O Ful H
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It can be shown rigorously that V(&) may be expanded in an asymp-
totic series of negative powers of €& by the term-by-term evaluation of
the series of residues at the poles to the left of the path of integra-
tion of the integrand of equation (A29). Thus

o0

v(E) ~ Z Rp(&) (A30)

m=0,1,2,...

where Rp(t) is the residue of the integrand at s = -(2m + 1). By

making use of the recurrence relations for the gamma function, P(S ; l)

may be expressed as

(53 - oA () (832
and
() - 2+ -
2

Hence for s = -(2m + 1)

F(é + i? + 3) omtl

s + 1\ _
F( 2 ) B (s+1)(s+3) ...(s+2m=-1)(s + 2m + 1)

(A33)

The sum of the residues of equation (A30) can therefore be written as

s + 2m + 3),sm+1
22 un=0,1,2,... s—-(2m + 1) 25/2g1n %;(E_é_l)(s +1)(s+3). . (s +2m = 1)r2(§;§-§)

(A3h)
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let s=-(2m + 1) 1in equation (A34); thus, the sum of the residues

becomes
-2m-1
2 E : (A35)
2\2 n=6,1,7,... =—2m-l

2 2 (m+ 1)mzr2(l_;_2£)

m_2m
Since r(l > 2’“) = m'ﬁgj) 2 further simplification of equation (A35)

results in

2
v(e) = [(20) ] (g)" (2 ) (A36)

m=0,1,2,¢¢¢ (m + l)25m+l(ml)3
Thus the short-time temperature distribution can be written as

-(2m+1)

Em [em)®  fa
U= \fr (A37
i n=6,1,2,... 22 (nm + 1)(m!)5\ﬁ )

The series solution given in equation (A37) for the short-time tem-
perature distribution will rapidly approach its asymptote if Xy > V?I

but becomes impractical as x7—0. In order to calculate the temperature
distribution in the vicinity of the leading edge, x; < 0.1, for short

time intervals V(&) needs to be expanded in positive powers of E.

In order to evaluate V(&) as a convergent power series in positive
powers of £, a closed path is chosen to the right of the path of inte-
gration in the clockwise direction, and

1., - 1\,s o
v(e) =$ _/tfﬂw r P(s 2 1)§ ds = - Z Ry (€)

Liw b2 o8/254, e I-Q(S + 2) w=0,1,2,...

L 2

(A38)

N AN
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where Rm(g) are the residues of the integrand at s =0, 1, 2, 4, 6,

8, 10 . . . . By making use of the recurrence relation given by
equation (A3l) for the gamma function, the series of residues of equa-~
tion (A38) after some simplification become

N n=1,2,3,... 25%(n1)>

X = n an
v - f - > onid) (- 2)‘@1_ (439)
M1

and

o n 2n-1
e ST eam g,
2 n=1,2,3,...  25%(al)? WTl/'

As a further check on the validity of the resulting series solutions
given by equations (A36) and (A59), the solutions were substituted back
into the ordinary differential equation (Al7) and satisfied it exactly.



2k
APPENDIX B

EVALIUATION OF THE INTEGRALS IN THE SHORT-TIME SOLUTION

PCR TORSIONAL STIFFNESS REDUCITION

J+l 1 1
1 T, @ - =+ice .
f x jV(i\dx == f b fﬁ £(s)e%"Jae ds
1 17 Toni 1
s [0
(3=1,2,3, ...) (Bl

Since the real part of the exponent of £ 1is always positive under
the integral sign, the contribution of the lower limit (zero) is null.

Therefore,

J+l )s+(J+l)

1 f(s)G_,

1 —+ie

[t 5
0 KVT%/ i _I:_im s + (J + 1)

(J =1, 2, 3, . . ') (B2)

ds

For the short-time solution —}—->> 1l it is appropriate for
1
computational purposes to expand the integrals in equation (B2) in an

asymptotic series of negative powers of Thus

L
i
e - ST mp
X V[—ldx, =  Ry(— (B3)
fo * ) T 1,2,... m( >

!
where Rm{—L—> is the residue of the integrand at s = -(2m + 1). By

S
\
making use of the recurrence relations for the gamma functlons as was

O FWiH
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done in appendix A, the evaluation of the series of residues after some
simplification can be written as

2 2 +1/2
J l le()l)d"l ~ ) (e vy” (3b)
0 n=0,1,2,..

V?I . (l - 2n2 - n)23n+ln!

1 X
L Similarly, the asymptotic series for jr x12V 1 dxl is the
3 0 T
b series of residues at s = -(2m + 1). However, the integrand possesses
0 a double pole at s = =3 as can be seen from
e, EBES
Xl V| — d.Xl = -QJT 1 / ds
0 V1 -E-i= W2 58/2(5 4 3)a1n = 1*2(s 2 2)
(B5)
and equations (A31l) and (A33). By making use of residue theory and the

recurrence relations for the gamms function, the series of residues of
equation (B5) after some simplification can be written as

. 1 X T T T
1 1
fo xl2v<_l_>dxlz£ - %Tl gl -—\[7 N 1% ™)1 loge2 +

1
Vv, o » 32 Hlooa6

T\ 1 Z”— Ken) E] 2Tln+l/2
8 n=2,3,k,

. 250%2(1 - p2)(ny)3

(B6)

where 9 ='0.5772157 . . . Euler's constant. The evaluation of the
1 3 [%
asymptotic series for J/\ Xq V(V::>dxl can also be found as the series
0 1

of residues at s = -(2m + 1). The integrand possesses all simple poles
at s = -(2m + 1) as can be seen from



1 , 2 _i,
[\ xlﬁv(f——\dxl ~ [k T2 L = \m _ ds
0 \ Y1/ il Jodoge 2fp 8-l b 5824y ns [2fs + 2)
2 2

The solution for the series of residues is similar to the solutions
previously arrived at and the resulting expression is

X @© 21_ n+l/2
fol XPV(%)d}‘lz > (o) 7y (28)

1 n=0,1,2,... (3 = 2n2 + n)25%1(n1)3

O FOU H
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APPENDIX C

1
EVALUATION OF THE INTEGRAL f Jo (anl) dx,
0

Z
Substitution in a known identity (see ref. 7) for ‘/1 Jo(z)az
0

results in

fo 1 Jo (ZnX) &x) = (Jo(Zn) + %El(zn)dg(zn) - J (Zn)eﬁ(znﬂ} (c1)

where efn(Zn) is the Struve function of order n. Since Jl(Zn) = 0,

equation (Cl) reduces to

1
= - X
j; Jo(Zn1) 4%y = Jo(Zn) - £ Jo(Zn)ef} (2n) (c2)
For values of O < Zp < 15.9, tabulated values of T5(Zz) and efi(zn)
are given in reference 8. When > 15.9 (see ref. 7)
2
J1(Zn) ~ Y(Zn) + 5 + (c3)

Therefore equation (C2) becomes

1
Jo ot = - Epofem)ra(ea) + 2 So(zn)| (n > 1.9

ol

(ck)
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A known identity involving the Bessel functions of the first and second
kind (ref. 8) is
_ 2
Yo(2n)J1(Zn) - Y1(2n)J0(2Zn) = o (c5)

and since Jj(Zn) = O, equation (C4) becomes
1
_ 1 ngn)
j;Jo(znxl)dxl'Z—rl‘[‘ 7 ] (Za> 15.9) (C6)

The asymptotic approximation for Jo(Zn) is

3o(Zn) ~ %Ein(zn + %) + 8_12-; sin(Zn - Eﬂ (c7)

O F&\W
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Figure 1l.- Diamond-shaped wing under a constant heat input.
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Figure 3.- Temperature distribution calculated with and without chord-
wise heat conduction plotted across the half-chord for various values
of the time parameter T, = gg T.
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